Современные трансформаторы: анализ состояния производства в РФ силовых масляных трансформаторов I – III габарита

Два десятилетия назад политический строй в России и экономическая модель хозяйствования существенно изменились. Единый народнохозяйственный механизм, как его тогда называли, развалился на части, из которых стали формироваться новые независимые рыночные экономики стран СНГ. После распада значительное количество трансформаторных производств оказалось за пределами России. Оставшимся в РФ крупным трансформаторным заводам: ОАО XK «Электрозавод» (г. Москва), ООО «Тольяттинский Трансформатор» (г. Тольятти), ЗАО «Энергомаш (Екатеринбург) – Уралэлектротяжмаш» Екатеринбург), ОАО «ЭТК «Биробиджанский завод силовых трансформаторов», ОАО «Алттранс», —приходится противостоять в конкурентной борьбе заводам из стран ближнего зарубежья и мощным фирмам Европы, Азии и США. Первые три из названных заводов выпускают в основном продукцию IV – VIII габарита, и только ОАО «ЭТК «БирЗСТ» выпускает всю линейку силовых масляных трансформаторов I – III габарита. Потребность в силовых трансформаторах I – III габарита для предприятий различных отраслей экономики РФ, безусловно, не могла быть удовлетворена только ОАО «ЭТК «БирЗСТ», поэтому, естественно, появился ряд новых заводов, продукция которых способствовала удовлетворению потребностей рынка. На базе существовавших еще в СССР производств сформировалось ЗАО «Группа компаний «Электрощит» - ТМ Самара». Выпускают трансформаторы I – II габарита Курганский электромеханический завод и завод НВА (г. Рассказово, Тамбовская обл.). Два новых завода появились в Подмосковье в конце XX – начале XXI века: ОАО «Электрощит» (г. Чехов) и ЗАО «Трансформер» (г. Подольск).

Энергично продвигаются на отечественный рынок силовые трансформаторы I-III габарита из Италии, Германии, Финляндии, Словакии, Сербии, Индии, Китая и др. стран.

Данные о количестве выпущенных силовых трансформаторов в разные годы в СССР приведены в таблице 1. [РОССИЙСКИЙ РЫНОК ЭЛЕКТРООБОРУДОВАНИЯ// Аналитический обзор. РБК. 2008].

Таблица 1. Объемы производства трансформаторного оборудования в 1970-1985 годы (в СССР), шт./тыс. кВА

Номенклатурные /ппы трансформаторов по мощности и напряжению	1970	1975	1980	1985
25 - 6 300 κBA, 6-35 κB	109 595/27 800	118 827/37 000	134 815/44 800	131 696/40 800
5 300 - 80 000 кВА, 110- 150 кВ	1 009/20 700	1 385/32 400	1 497/31 600	1 443/29 700
Все мощности: 220, 330 и 500 кВ	324/33 200	273/36 700	282/43 800	299/42 600

Основные производители и примерные объемы производства силовых масляных трансформаторов I — III габарита в РФ и в странах СНГ по состоянию на 2009-2010 г.г. представлены в таблице 2 и на диаграмме 1. Потребность в силовых трансформаторах I — III габарита в 2011-2012 г.г. с разбивкой по мощностям, определенная автором на основе собственных оригинальных моделей прогнозирования, приведена в таблице 3 [Савинцев Ю.М. Плановое развитие рынка силовых трансформаторов: утопия или необходимость?/ Электротехнический рынок. 2011. № 1-2 (37-38). С. 39-41].

Таблица 2.

ОБЪЕМЫ ПРОИЗВОДСТВА ДЕЙСТВУЮЩИХ ЗАВОДОВ, СПЕЦИАЛИЗИРУЮЩИХСЯ НА ПРОИЗВОДСТВЕ І – III ТРАНСФОРМАТОРОВ ГАБАРИТА	шт. /год
УП «МЭТЗ им. В.И. Козлова», РБ, г. Минск	20 000
DAO "ЭТК "Бир3СТ", г. Биробиджан	2 000
ВАО «Группа компаний Электрощит-ТМ-Самара» г. Самара	3 000

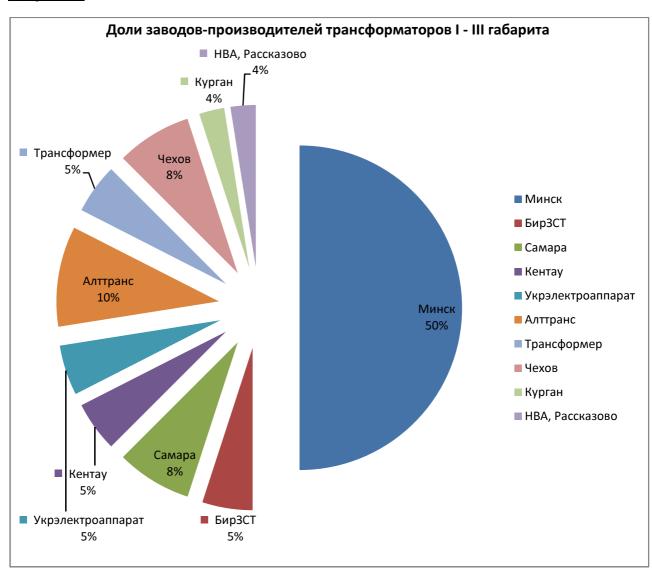

Кентауский трансформаторный завод, РК, г. Кентау	2 000
DAO «Укрэлектроаппарат», Украина, г. Хмельницкий	2 000
DAO «Алттранс», г. Барнаул	4 000
ЗАО «Трансформер», г. Подольск	2 000
DAO «Электрощит», г. Чехов	3 000
DAO "Курганский электромеханический завод", г. Курган	1 000
ООО «Завод НВА», г. Рассказово, Тамбовская обл.	1 000
ВСЕГО	40 000

Таблица 3.

Мощность, кВА	Прогноз новые, шт	Прогноз замены, шт
63	23835	3940
100	8785	1452
160	4900	810
250	3238	535
400	2348	388
630	1806	299
1000	621	102
1600	512	84
2511	433	71
4000	372	61
6300	324	53
ВСЕГО	47173	7796
I-II габарит	44911	7424
III габарит	2262	372

Общий годовой объем рынка трансформаторов I – III габарита в РФ автор оценивает в 10-12 млрд. руб.

Диаграмма 1.

При анализе состояния современного производства силовых трансформаторов и состояния в целом российского рынка силовых трансформаторов I — III габарита можно исходить из «маркетинг-микс» (комплекса маркетинга), который представляет основные факторы, являющиеся предметом маркетингового управления. Комплекс состоит из четырёх элементов, так называемых «четырех Р»: товара, цены, канала (место) распространения и продвижения (англ. Product, Price, Place, Promotion).

На сегодняшний день в распределительных подстанциях систем электроснабжения потребителей нашли применение следующие типы конструкций трехфазных силовых масляных трансформаторов: ТМ, ТМГ, ТМЗ, ТМФ, ТМЭ, ТМБ, ТМЖ, ТМН, ТМПН. Принципиально отличающихся по конструкции типов масляных силовых трансформаторов всего четыре: ТМ, ТМГ, ТМЗ и ТМН.

Стенки баков трансформаторов ТМ изготовлены из стального листа толщиной от 2,5 до 4 мм; тепловое увеличение объема масла компенсируется расширением в дополнительный расширительный бак (расширитель). Выводы обмоток ВН и НН расположены на крышке бака. Охлаждение масла происходит в коробчатых или пластинчатых радиаторах, расположенных вдоль стенок основного бака. Преимущества: очень высокая стойкость к случайным механическим воздействиям при монтаже, при транспортировке и т.п. Продолжительность эксплуатации достигает сорока-пятидесяти лет. Недостаток: требуется периодический контроль влагосодержания трансформаторного масла. Трансформатор ТМФ – это тот же трансформатор ТМ, но с боковыми выводами обмоток ВН и НН, закрытыми защитными коробами.

Стенки баков трансформаторов (герметичных) ТМГ изготовлены из стального листа толщиной от 1,0 до 1,5 мм — это так называемый гофробак. Выводы обмоток ВН и НН расположены на крышке бака. Расширитель и воздушная или газовая "подушка" отсутствуют. Температурные изменения объема масла

компенсируются упругой деформацией гофров бака. Контакт масла с окружающей средой полностью отсутствует. Это обстоятельство намного улучшает условия работы масла, исключает возможность его увлажнения, загрязнения или окисления. Трансформаторное масло перед заливкой дегазируется. Именно по этой причине свойства масла практически не меняются на протяжении всего срока службы. Благодаря этому нет необходимости производить забор пробы масла. Достоинства: сокращение массогабаритных характеристик, значительное сокращение эксплуатационных расходов (на 30% – 40%). Недостаток: низкая стойкость к случайным механическим воздействиям при монтаже, при транспортировке и т.п.

Конструкция бака трансформаторов ТМЗ по толщине такая же, как и у ТМ, но при этом бак выполнен в герметичном исполнении. Выводы ВН и НН расположены на боковых стенках бака, как у трансформатора ТМФ. Защитой масла от окисления, загрязнения, насыщения влагой выступает сухой азот (по принципу азотной подушки между крышкой трансформатора и зеркалом масла). Этот тип трансформаторов сочетает в себе положительные эксплуатационные свойства трансформаторов ТМ и ТМГ.

Трансформаторы типов ТМ, ТМГ, ТМЗ имеют возможность использования 5-ти ступенчатой регулировки напряжения, в диапазоне $\pm 2x2,5\%$ от номинального напряжения по стороне ВН. Регулировка происходит по принципу «Переключения Без Возбуждения» (ПБВ), т.е. в выключенном состоянии.

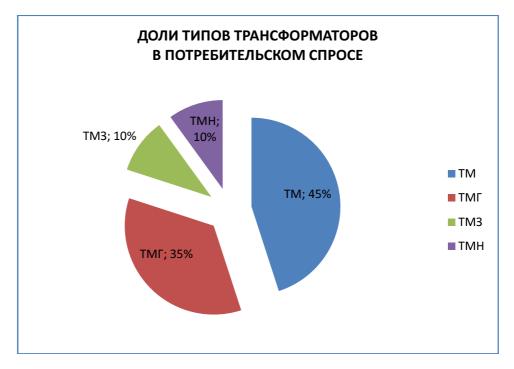
В силовых трансформаторах ТМН, имеющих конструкцию бака аналогичную ТМ, предусмотрена возможность автоматического регулирования напряжения без отключения трансформатора от сети с помощью устройства РПН типа РНТА 35/125 или аналогичного устройства. Имеется девять ступеней регулировки напряжения по стороне ВН с диапазоном регулирования $\pm 4x2,5\%$ от номинального. Переключение трансформатора ТМН на другой диапазон может производиться как в автоматическом, так и в ручном режимах. Выводы обмоток ВН и НН расположены на крышке бака.

Трансформаторы типов ТМЭ, ТМЖ и ТМПН достаточно специфичны, спрос на них «привязан» к конкретным потребителям.

Трансформаторы ТМЭ предназначены для питания электрооборудования экскаваторов и работают в условиях тряски, вибрации воздействия инерционных сил при разгоне и торможении поворотной платформы, крена и дифферента до 12° , могут располагаться на расстоянии до 6 м от оси поворота платформы. Трансформаторы ТМБ предназначены для питания электрооборудования буровых установок.

Силовые трансформаторы ТМЖ выпускаются с номинальным напряжением первичной обмотки (высокого напряжения) 27.5 кВ и вторичной обмотки (низкого напряжения) - 0,4 кВ и предназначены для питания электрооборудования железных дорог.

Трансформаторы ТМПН с первичным напряжением 0,38 кВ предназначены для преобразования электроэнергии в составе электроустановок питания погружных электронасосов добычи нефти. ТМПН с первичным напряжением 6; 10кВ предназначены для преобразования электроэнергии в составе комплектных трансформаторных подстанций, питающих погружные электронасосы добычи нефти.


Все трансформаторы имеют ВН 6 (10) кВ. ТМН выпускают, как правило, класса напряжения 35 кВ. Трансформатор ТМПН выпускается также класса напряжения до 3 кВ.

Потребность в трансформаторах типов ТМ, ТМГ, ТМЗ, ТМН была оценена автором на выборке заявок, поступивших от конкретных заказчиков в течение 2008 - 2010 гг. и представлена в таблице 4 и на диаграмме 2.

Тип конструкции рансформатора	TM	ТМГ	TM3	ТМН
Доля в отребительском спросе	45%	35%	10%	10%

Диаграмма 2.

Однако, несмотря на потребительский спрос, подавляющее большинство отечественных и зарубежных трансформаторных заводов выпускают только типы ТМ и ТМГ как пользующиеся наибольшим спросом. На сегодняшний день единственный завод в России изготавливает все перечисленные выше типы трансформаторов – OAO «ЭТК «БирЗСТ».

В соответствии с ГОСТ 15467-79 качество продукции — это совокупность свойств продукции, обуславливающих ее пригодность удовлетворять определенные потребности в соответствии с ее назначением. Применительно к силовому трансформатору такими свойствами являются, прежде всего, его электротехнические характеристики (потери холостого хода и короткого замыкания, токи холостого хода и короткого замыкания) и характеристики надежности (долговечность, безотказность, ремонтопригодность и сохраняемость). ГОСТ Р 52719-2007 устанавливает основные технические требования, исходя из которых параметры трансформаторов, изготавливаемых сегодня на отечественных заводах, примерно соответствуют значениям, приведенным в таблице 5.

Сравнительные характеристики трансформаторов ТМГ номинальной мощностью 100-630 кВА некоторых заводов представлены в таблицах 6a-6e.

Таблица 5.

Мощность,	Напряже	Напряжение			Потери, Вт Габаритные размеры				ы, мм.	Масса, кг.	
кВА		НН, В	Схема и группа единения	Uк, %	[xx,% -	X.X	к.з.	L	В	Н	
40	6 10		Д/Үн-11 У/Ун-0 У/Zн-11	4,5 4,5 4,7	3,0	155	880 880 1000	800	500	1000	300
63	6 10	400	Д/Үн-11 У/Ун-0 У/Zн-11	4,5 4,5 4,7	3,0	220	1280 1280 1470	1000	500	1000	420
100	6		Д/Үн-11	4,5	1,6	270	1970	1020	750	1180	550

	10		У/Ун-0	4,5						1180	
			У/Zн-11	4,7						1260	
			Д/Үн-11	4,5						1120	
160	6		У/Ун-0	4,5	1,5	410	2600	1100	780	1120	700
	10		У/Zн-11	4,7						1200	
	6	1	Д/Үн-11							1350	950
250	10		У/Ун-0	4,5	1,0	530 3	3700	1250	760	1350	950
	20		9/9H-0							1430	970
	6	1	Д/Үн-11							1380	1350
400	10		У/Ун-0	4,5	0,8	800	5500	5500 1500	850	1380	1350
	20	3	3/3 H-0							1470	1370
	6	1	Д/Үн-11							1510	
630	10		У/Ун-0	5,5	0,6	1240	7600	1640	940	1510	2000
	20		3/3 H-0							1600	
	6	1	Д/Үн-11							1640	2850
1000	10		У/Ун-0	5,5	0,5	1600	10800	1715	1120	1640	2850
	20		373110							1740	2900
	6	1	Д/Үн-11							2020	3200
1250	10		У/Ун-0	6,0	0,5	1800	12400	1800	1200	2020	3200
	20		3/3110							2100	3250
	6]	Д/Үн-11							2170	4200
1600	10		У/Ун-0	6,0	0,5	2100	16500	2180	1260	2170	4200
	20		3/3 H-O							2200	4300

Таблица 6а. ТМГ, 100 кВА

Тип	Тип Рхх, Ркз,		Уровень Уровень шума, шума,		Га	Macca		
THI	Вт	Вт	La, дб	Lpa, дб	L, мм	В, мм	Н, мм	ΚΓ
		<u> </u>	МЭТ3	им. Козлова				
ТМГ	270	1970	50	59	1020	750	1180	540
ТМГМШ	220	2270	43	52	1000	720	925	540
			Vienovio	***********				
			у крэле	ктроаппарат				
ТМГ	305	_	-	-	1310	750	1050	700
			ЭТК	«БирЗСТ»				

ТМГ	280	2000	-	-	942	595	1175	580

Таблица 6b. ТМГ, 160 кВА

Тип	Pxx,	Ркз,	La,	Lpa,	Габариты			Macca
ТИП	Вт	Вт	дб	дб	L, MM	В, мм	Н ,мм	КГ
			МЭТ3	им. Козлова				
ТМГ	410	2600	53	62	1100	780	1180	700
ТМГМШ	320	2900	45	54	1120	750	1220	710
			Укрэле	ктроаппарат				
ТМГ	410	-	-	-	1330	765	1450	938
			ЭТК	«БирЗСТ»			•	
ТМГ	400	2600	-	-	986	672	1240	750

Таблица 6с. ТМГ, 250 кВА

Тип	Pxx,	Ркз,	La,	Lpa,	Γε	абариты		Macca
ТИП	Вт	Вт	дб	дб	L, мм	В, мм	Н, мм	КГ
			МЭТ3	им. Козлова				
ТМГ	580	3700	56	65	1220	840	1220	950
ТМГМШ	450	4200	47	56	1220	840	1320	1020
			Укрэле	ктроаппарат				
ТМГ	550	-	-	-	1460	790	1570	1233
			ЭТК	«БирЗСТ»				
ТМГ	550	3500	-	-	1196	735	1345	1050

Таблица 6d. ТМГ, 400 кВА

Тип	Pxx,	Ркз,	La,	Lpa,	Γ	Macca		
	Вт	Вт	дб	дб	L, мм	В, мм	Н, мм	ΚΓ
	1	1	МЭТ3	им. Козлова	1		1	
ТМГ	830	5400	59	68	1300	860	1300	1360
ТМГМШ	600	5400	49	58	1300	860	1480	1480
			Укрэле	ктроаппарат				

ТМГ	830	-	-	-	1390	670	1695	1795
ЭТК «БирЗСТ»								
ТМГ	760	5500	42,4	49,7	1252	766	1407	1308

Таблица бе. ТМГ, 630 кВА

T.	Pxx,	Рхх, Ркз,		Lpa,	I	Macca				
Тип	Вт Вт		дб	дб	L, мм В, мм Н, мм			КГ		
	МЭТЗ им. Козлова									
ТМГ	1240	7600	60	70	1540	1060	1470	2000		
ТМГМШ	940	7600	52	62	1540	1060	1600	2100		
	Укрэлектроаппарат									
ТМГ	1050	-	-	-	1590	1000	1735	2100		
	ЭТК «Бир3СТ»									
ТМГ	1000	7600	47,1	53,8	1578	862	1579	1780		

Как видно из таблиц 6а-е, параметры потерь у трансформаторов разных заводов примерно одинаковы, однако выпускаются и трансформаторы с потерями x.x., уменьшенными на 20%.

К сожалению, десятки тысяч продаваемых на сегодняшний день силовых распределительных трансформаторов (I – III габарита), как новых, так и выдаваемых за новые, ПО ТЕХНИЧЕСКИМ ДАННЫМ, ПРЕДСТАВЛЕННЫМ В ТЕХНИЧЕСКОЙ ДОКУМЕНТАЦИИ НЕВОЗМОЖНО ОТЛИЧИТЬ ДРУГ ОТ ДРУГА! Такая ситуация сложилась в связи с тем, что только ГОСТ 11920-85 «Трансформаторы силовые масляные общего назначения напряжением до 35 кВ включительно» регламентирует потери в трансформаторах, да и то, лишь начиная с мощности 1000 кВА, и только для трансформаторов 1000/35 и 1000/10 для собственных нужд электростанций. В результате, если в паспорте на трансформатор, к примеру, ТМ-1000/10 будет указано, что потери холостого хода не превышают 2200 Вт, а потери к.з. не превышают 12200 Вт, ТО ДАННЫЙ ТРАНСФОРМАТОР С ТОЧКИ ЗРЕНИЯ ЭЛЕКТРОТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ЭКВИВАЛЕНТЕН НОВОМУ, даже... если он был выпушен 15 лет назад или подвергался ремонту (так называемые «ТРАНСФОРМАТОРЫ С ХРАНЕНИЯ»).

Принципиально иная ситуация у европейских производителей силовых трансформаторов. Там существуют стандарты на показатели энергоэффективности [Энергосбережение в Европе: применение энергоэффективных распределительных трансформаторов/ Перевод с английского Е. В. Мельниковой. Редактор перевода В. С. Ионов// Энергосбережение. 2003. № 4, 2004. № 1]. Согласно стандарту НD428 для распределительных трансформаторов с масляным охлаждением и максимальным напряжением до 24 кВ основными параметрами (показателями) энергетической эффективности являются приведенные в таблице 7 нормы потерь короткого замыкания (к.з.) и «холостого хода» (х.х.). Для масляных трансформаторов допускается три уровня потерь к.з. (А, В и С) и три уровня потерь х.х. (А', В' и С'), которые определяются по специальной методике с определенным допуском на погрешность. Наиболее эффективной является комбинация С '- С. Если сравнить параметры потерь для трансформатора мощностью 630 кВА, то очевидно, что эти показатели для наиболее эффективной комбинации по стандарту НD428 существенно лучше показателя энергоэффективного трансформатора производства МЭТЗ им. В.И. Козлова (РБ, г. Минск), и тем более лучше показателей основной массы силовых трансформаторов, покупаемых российскими потребителями.

Таблина 7.

Номинальная	Допустимые	е уровни потерь	короткого	Допустимые уровни потерь «холостого				
мощность,	38	мыкания, Вт		хода», Вт				
кВА	A	В	С	A'	B'	C'		
100	1750	2150	1475	320	260	210		
160	2350	3100	2000	460	375	300		
250	3250	4200	2750	650	530	425		
400	4600	6000	3850	930	750	610		
630	6500	8400	5400	1300	1 030	860		
1000	10500	13000	9500	1700	1400	1100		
1600	17000	20000	14000	2600	2200	1700		
2500	26500	32000	22000	3800	3200	2500		

Однако качество силового трансформатора – это не только «хорошие» паспортные характеристики. ГОСТ Р 52719-2007 требует, что наработка на отказ должна быть не менее 25000 часов, а полный срок службы – не менее 30 лет. Нетрудно видеть, что трансформатор с момента ввода в эксплуатацию должен проработать безотказно 3 года!

Так какую же трансформаторную продукцию выбирает отечественный покупатель? Выше отмечалось, что на российском рынке широко представлены российские производители, и продукция заводов стран СНГ, и трансформаторы зарубежных производителей. Качественная продукция европейских заводов имеет естественно более высокую цену при равной мощности. Срок поставки при изготовлении на заказ достигает нескольких месяцев. Новая продукция российских заводов имеет приемлемую цену и средний срок поставки – до полутора месяцев. Так называемая продукция «с хранения» (отремонтированный трансформатор, купленный предприимчивыми «производителями» по цене металлолома, качественно покрашенный, с поддельным паспортом) всегда есть на складе и имеет цену на 40% - 50 % ниже новой продукции, выпускаемой российскими заводами. Отрадно заметить, что все большее число покупателей «не ведется» на агрессивную рекламу поставщиков «трансформаторов с хранения», а требует ТОЛЬКО НОВУЮ ПРОДУКЦИЮ. Среднерыночные цены (с НДС) на новые силовые масляные трансформаторы представлены в таблице 8.

Таблица 8.

ΓΜ(Γ) 100\6-10	100 000 руб.
ΓΜ(Γ) 160\6-10	130 000 руб.
ΓΜ(Γ) 250\6-10	170 000 руб.
ΓΜ(Γ) 400\6-10	220 000 руб.
ΓM(Γ) 630\6-10	330 000 руб.
ΓΜ(Γ) 1000\6-10	500 000 руб.
ΓM 1600\6-10	970 000 руб.
ΓM 2500\6-10	1 410 000 руб.
ΓM 4000\6-10	2 400 000 руб.
ΓM 6300\6-10	3 100 000 руб.

Каковы перспективы развития трансформаторного производства в России, да и в мире вообще?

Распоряжением Правительства РФ от 1 декабря 2009 г. № 1830-р утвержден «План мероприятий по энергосбережению и повышению энергетической эффективности в Российской Федерации», в котором предусматривается разработка и реализация комплекса мер по созданию благоприятных условий для развития производства энергосберегающих устройств и стимулированию роста предложения в соответствии с потенциальным спросом. В «Плане...» дано указание на формирование предложений по ограничению (запрету) оборота энергетических устройств, характеризующихся неэффективным использованием энергоресурсов.

Силовые распределительные трансформаторы мощностью 25—630 кВА напряжением 6-10 кВ - наиболее массовая серия производимых и эксплуатируемых силовых трансформаторов как в нашей стране и за рубежом. Общее количество распределительных трансформаторов в России составляет более чем 4 млн. шт.

Ежегодное потребление электроэнергии в России находится на уровне 900 – 1000 миллиардов кВт*ч, при этом общие потери электроэнергии в распределительных трансформаторах оцениваются в 7,5 миллиардов кВт*ч и примерно 50% - это потери в магнитопроводах трансформаторов.

Ежегодные затраты на обслуживание одного распределительного трансформатора с магнитопроводом из холоднокатаной электротехнической стали составляют примерно 8% от его первоначальной стоимости.

Наиболее перспективный путь снижения затрат на производство и эксплуатацию силовых распределительных трансформаторов - это применение магнитопроводов из аморфных (нанокристаллических) сплавов, при этом обеспечивается более чем пятикратное снижение потерь холостого хода трансформаторов по сравнению с традиционными магнитопроводами из электротехнической стали.

Силовые распределительные трансформаторы с сердечником из аморфной стали серийно выпускаются в США, Канаде, Японии, Индии, Словакии. Всего в мире уже изготовлено 60 – 70 тыс. единиц трансформаторов мощностью 25 – 100 кВА, примерно 1000 единиц прошли успешные многолетние испытания в различных энергосистемах. Наибольших успехов добились США и Япония. Японская фирма "Hitachi" в сотрудничестве с американской "Allied Signal" выпустила на рынок гамму силовых трансформаторов (мощностью от 500 до 1 тыс. кВА), сердечник которых изготовлен из аморфного сплава. Как показали испытания, он позволяет сократить потери энергии в сердечнике трансформатора на 80% по сравнению со стальным аналогом. По оценке, если бы во всех действующих в мире трансформаторах установить сердечники из аморфных металлов, среднегодовая экономия энергии составила бы 40 млн. кВт*ч. Недостатком сердечников из аморфных материалов является их более высокая стоимость по сравнению с традиционными материалами – у японской фирмы эта разница достигает 15 - 20%. Компания "Allied Signal" производит аморфный сплав для трансформаторов на заводе в г. Конуэй (США). Его цена не превышает стоимости кремнистой стали - 2 - 2,5 долл./кг. Тем не менее, руководство фирмы утверждает, что производство таких сердечников обходится дороже в силу большего потребления металла и неотработанности технологического процесса. Еще одной проблемой является усложнение процесса изготовления сердечника по мере увеличения его размеров. Японской фирме с этой целью пришлось освоить специальную технологию. "Allied Signal" имеет два завода по выпуску сердечников из аморфных сплавов: один в Индии (с 1993 г) и другой в КНР (в г Шанхай с 1996 г). Годовая мощность последнего составляет 450 т, в ближайшее время предполагается ее увеличение в три раза. Фирмы - партнеры рассчитывают на сбыт силовых трансформаторов с сердечником из аморфных металлов на рынках стран с дорогой электроэнергией.

Сравнительная таблица проектных параметров силовых распределительных трансформаторов с сердечником из аморфной (АС) и из обычной стали (ЭС) представлена ниже в таблице 9.

Таблица 9.

	100 кВА		250 кВА		400 кВА		630 кВА	
Параметр	АС В=1,3Тл	ЭС	АС В=1,285Тл	ЭС	AC B=1,35 Тл	ЭС	АС В=1,31Тл	ЭС
Потери, Вт								
Холостого хода	64	300	128	580	161	830	238	1200
Короткого замыкания	1617	1700	3129	3100	4457	4400	6353	6200
Напряжение короткого замыкания, %	4,42	4,5	4,37	4,5	4,5	4,5	6,06	6,0
Ток холостого хода, %	0,2	2,5	0,093	1,9	0,078	1,6	0,074	1,3

Ю.М. Савинцев, кандидат технических наук, генеральный директор ЗАО «Корпорация «Русский трансформатор»

